Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Jaroslava Maroszová, Petra Stachová, Zuzana Vasková, Dušan Valigura and Marian Koman*
Department of Inorganic Chemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
Correspondence e-mail:
jaroslava.maroszova@stuba.sk

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.042$
$w R$ factor $=0.111$
Data-to-parameter ratio $=15.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

(3,5-Dinitrobenzoato- κO)bis[(2-pyridyl)-methanol- $\left.\kappa^{2} N, O\right]$ copper(II) 3,5-dinitrobenzoate

In the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}\right)\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]\left(\mathrm{C}_{7} \mathrm{H}_{3}-\right.$ $\mathrm{N}_{2} \mathrm{O}_{6}$), the $\mathrm{Cu}^{\text {II }}$ atom is coordinated by two chelating 2pyridylmethanol ligands and a monodentate 3,5-dinitrobenzoate anion, forming a square-pyramidal coordination polyhedron. The cation and neighbouring anion are connected by two very strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form an ion pair.

Comment

As a part of our systematic study of copper(II) carboxylate complexes with biologically interesting molecular ligands, we report here the crystal structure of the title compound, (I).

The asymmetric unit of (I) is made up of a $\left[\mathrm{Cu}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}\right)\right]^{+}$cation and a $\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{-}$anion. The (2-pyridyl)methanol ligand (also known as 2-pyridylcarbinol and abbreviated as 2-pycarb) prefers a chelating mode, in contrast with the bridging mode found for (3-pyridyl)methanol (known as ronicol) in copper(II) complexes (Stachová et al., 2005). The 3,5-dinitrobenzoate ligand is monodentate, coordinating through a carboxylate O atom to give a complex cation with distorted square-pyramidal geometry and a $\mathrm{CuO}_{2} \mathrm{~N}_{2} \mathrm{O}^{\prime}$ coordination polyhedron. The basal plane is formed by carboxylate atom O1 from the coordinating 3,5-dinitrobenzoate ligand, atom O31 from one

Figure 1
The asymmetric unit of (I). Displacement ellipsoids are drawn at the 40% probability level. Dotted lines represent $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Received 3 November 2005 Accepted 9 December 2005 Online 14 December 2005

2-pycarb ligand and two mutually trans pyridine atoms, N5 and N6, from two 2-pycarb ligands. The apical position of the coordination polyhedron is occupied by atom O 41 of a 2 pycarb ligand, with a $\mathrm{Cu}-\mathrm{O}$ distance longer than those in the basal plane (Table 1). The $\mathrm{Cu} 1-\mathrm{O} 2$ distance of 2.735 (2) \AA is longer than the $\mathrm{Cu} 1-\mathrm{O} 1$ distance. Also, the $\mathrm{C} 11-\mathrm{O} 2$ distance is significantly shorter than the $\mathrm{C} 11-\mathrm{O} 1$ distance. These confirm that atom O2 is not involved in coordination and the ligand is monodentate. Atom Cu 1 is displaced out of the basal plane by 0.120 (1) \AA in the direction of the apical O 41 atom. The 3,5 -dinitrobenzoate anion is uncoordinated. With the exception of the $\mathrm{C}-\mathrm{O}$ distances in the carboxylate groups, there are no significant differences in bond lengths or angles between the coordinated and uncoordinated anions and the values are comparable with those observed for bis(1,3-diaminopropane)-3,5-dinitrobenzoatocopper(II) 3,5-dinitrobenzoate (Sundberg et al., 1994).

Two very strong hydrogen bonds link atoms O7 and O8 of the uncoordinated 3,5-dinitrobenzoate anion to hydroxyl atoms H41 and H31 of the coordinated 2-pycarb ligands (Table 2), giving rise to ion-pair formation. Similar hydrogen bonding is reported for bis(triethanolamine)copper(II) diacetate (Krabbes et al., 1999). In the closely related benzoatobis(dimethylaminoetanol)copper(II) benzoate (Turpeinen et al., 1985), the carboxylate anions form hydrogen bonds with hydroxyl H atoms of the coordinated ligands. Similar but weaker hydrogen bonds are found in copper(II) complexes containing coordinated NH groups (Sen et al., 2000, Sundberg \& Klinga, 1994).

Experimental

(2-Pyridyl)methanol (2 mmol) was added to copper(II) acetate (1 mmol) in aqueous solution (20 ml). 3,5-Dinitrobenzoic acid (2 mmol) was then added. The powdery blue product was filtered off and dried at room temperature. Blue prismatic crystals of (I) suitable for X-ray analysis were obtained from the mother liquor after slow room-temperature crystallization over a period of a few weeks.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}\right)\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]-$ $\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}\right)$
$M_{r}=704.02$
Triclinic, $P \overline{1}$
$a=9.870$ (1) \AA
$b=12.181$ (1) \AA
$c=12.732$ (1) \AA
$\alpha=95.29(1)^{\circ}$
$\beta=108.68$ (1) ${ }^{\circ}$
$\gamma=91.80(1)^{\circ}$
$V=1440.9$ (2) A ${ }^{3}$

Data collection

Siemens $P 4$ diffractometer

 φ scansAbsorption correction: ψ scan
(XEMP; Siemens, 1990)
$T_{\text {min }}=0.641, T_{\text {max }}=0.777$
7697 measured reflections 6556 independent reflections
5266 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.623 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=4.2-12.0^{\circ}$
$\mu=0.84 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, blue
$0.55 \times 0.45 \times 0.30 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\mathrm{int}}=0.029 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-1 \rightarrow 12 \\
& k=-15 \rightarrow 15 \\
& l=-16 \rightarrow 16 \\
& 2 \text { standard reflections } \\
& \quad \text { every } 100 \text { reflections } \\
& \quad \text { intensity decay: none }
\end{aligned}
$$

Refinement

Refinement on F^{2}

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0601 P)^{2}\right. \\
\quad+0.292 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.52 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=-0.63 \mathrm{e}^{-3}
\end{gathered}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.111$
$S=1.04$
6556 reflections
433 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.967(2)$	$\mathrm{Cu} 1-\mathrm{O} 41$	$2.301(2)$
$\mathrm{Cu} 1-\mathrm{N} 5$	$1.972(2)$	$\mathrm{O} 1-\mathrm{C} 11$	$1.274(3)$
$\mathrm{Cu} 1-\mathrm{N} 6$	$1.993(2)$	$\mathrm{O} 2-\mathrm{C} 11$	$1.224(3)$
$\mathrm{Cu} 1-\mathrm{O} 31$	$2.000(2)$		
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 5$	$92.43(7)$	$\mathrm{N} 6-\mathrm{Cu} 1-\mathrm{O} 31$	$93.16(7)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 6$	$93.46(7)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 41$	$96.50(7)$
N5-Cu1-N6	$173.81(7)$	$\mathrm{N} 5-\mathrm{Cu} 1-\mathrm{O} 41$	$99.99(7)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 31$	$162.24(7)$	$\mathrm{N} 6-\mathrm{Cu} 1-\mathrm{O} 41$	$77.45(8)$
N5-Cu1-O31	$81.75(7)$	$\mathrm{O} 31-\mathrm{Cu} 1-\mathrm{O} 41$	$101.02(6)$

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O31-H31 \cdots O8	0.87	1.65	$2.512(2)$	173
O41-H41 O7	0.93	1.71	$2.631(3)$	174

Atoms H31 and H41 were located in a difference Fourier map and their positions were not refined. The remaining H atoms were placed in geometrically calculated positions and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 (aromatic) or $0.97 \AA$ (methylene). The $U_{\text {iso }}$ value for all H atoms was fixed at $0.05 \AA^{2}$. Atom O 11 of an NO_{2} group is disordered over two positions, O11A and $\mathrm{O} 11 B$. The occupancy factors were initially refined to 0.502 (2) and 0.498 (2), but later fixed at 0.5 each.

Data collection, cell refinement and data reduction: XSCANS (Siemens, 1994); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); publication material: WinGX (Farrugia, 1999).

This work was supported by VEGA grant 1/2452/05.

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838..
Krabbes, I., Seichter, W., Breuning, T., Otschik, P. \& Gloe, K. (1999). Z. Anorg. Allg. Chem. 625, 1562-1565.
Sen, S., Saha, M. K., Mitra, S., Edwards, A. J. \& Clegg, W. (2000). Polyhedron, 19, 1881-1885.
Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford University Press.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1990). XEMP. Version 4.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Stachová, P., Valigura, D., Koman, M. \& Glowiak, T. (2005). Acta Cryst. E61, m994-m996.
Sundberg, M. R. \& Klinga, M. (1994). Polyhedron, 13, 1099-1100.
Sundberg, M. R., Klinga, M. \& Uggla, R. (1994). Inorg. Chim. Acta, 216, 57-63.
Turpeinen, U., Hamalainen, R. \& Ahlgren, M. (1985). Acta Cryst. C41, 17281730.

